Apresentação de apoio para docentes de Arquitetura / Engenharia Civil

Capítulo 05: Resistência à Corrosão dos Aços Inoxidáveis

Conteúdo

- A maioria dos materiais se deteriora com o tempo
- 2. Por que o aço inoxidável é resistente à corrosão?
- 3. Tipos de corrosão dos aços inoxidáveis
- 4. Como selecionar o tipo de aço inoxidável certo com a resistência à corrosão adequada
 - Aplicações estruturais
 - Outras aplicações
- 5. Referências

1. A maioria dos materiais se deteriora com o Tempo

A maioria dos materiais se deteriora com o tempo

Material	Madeira	Aço	Concreto
Tipos de deterioração	Fungos Insetos Sol + chuva	Ferrugem	Trincas/ Desprendimento
Ações de atenuação	Tratamentos químicos Pintura / Verniz	Galvanização Pintura	Vergalhões resistentes à corrosão

A maioria dos materiais deteriora com o tempo

Material	Pedra	Vidro	Polímeros
Tipos de deterioração	Desgaste Danos por Poluição	Quebra	Torna-se frágil sob luz UV
Ações de atenuação	Geralmente nenhuma	Vidro temperado	Tipos de polímeros aprimorados

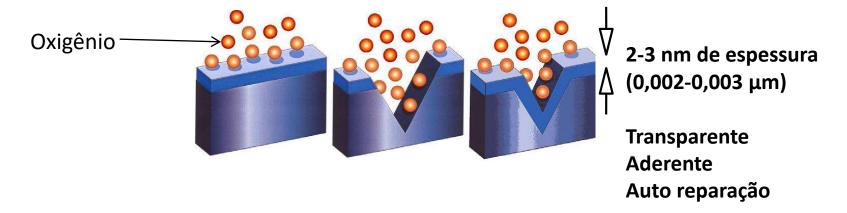

A maioria dos materiais deteriora com o tempo

Material	Alumínio*	Cobre	Aço Inoxidável
Tipo de deterioração	Presença de pontos de corrosão com o tempo, possível corrosão galvânica	Forma uma pátina verde com o tempo	Sem deterioração
Ações de atenuação	A corrosão galvânica pode ser evitada	Nenhuma	Nenhuma é necessária

^{*} O alumínio forma um óxido protetor fino como o aço inoxidável, mas com uma resistência à corrosão muito menor

Corrosão no Concreto

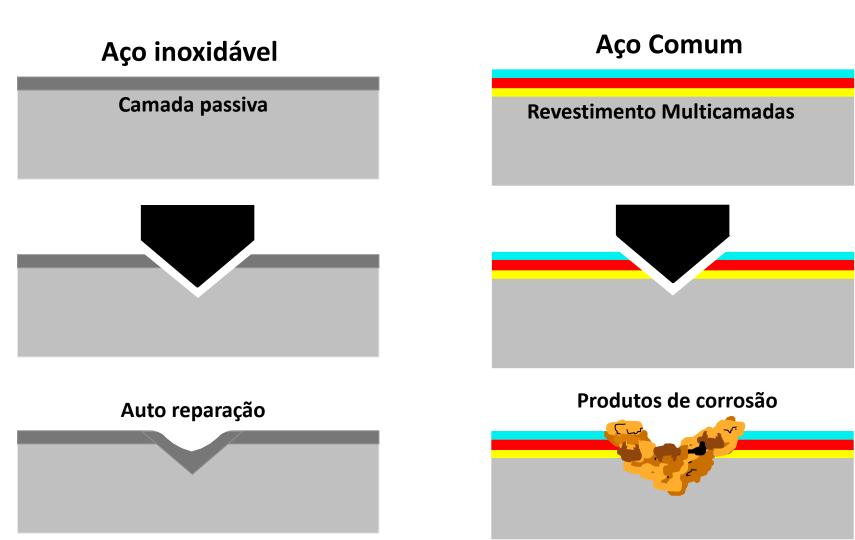
(problemas de corrosão não estão limitados a superfícies externas!)

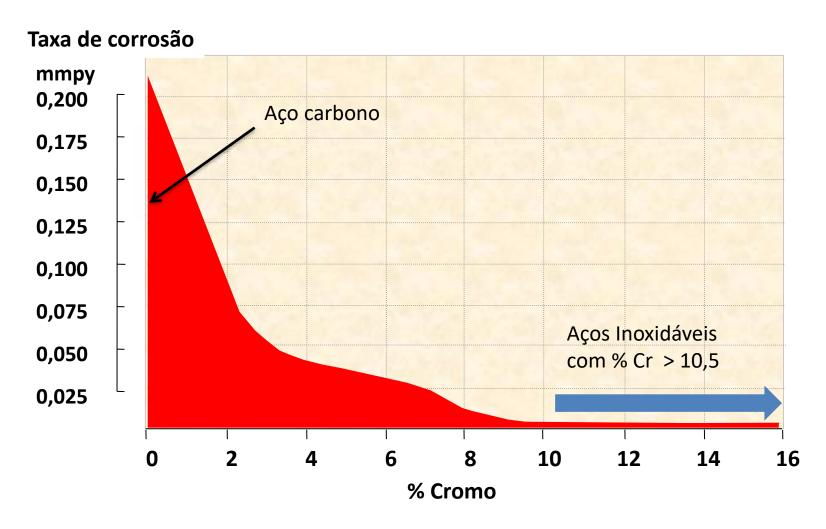

O aço inoxidável proporciona tanto resistência mecânica quanto resistência à corrosão no interior do concreto, proporcionando uma longa vida util sem manutenção da estrutura.

- A corrosão no aço carbono sem proteção ocorre mesmo dentro de estruturas de concreto armado, visto que os cloretos presentes no ambiente (marinho / degelo) difundem através do concreto.
- Os produtos de corrosão (oxidação) têm um volume maior do que o metal e criam tensões internas fazendo com que a cobertura de concreto se desfaça.
- Mitigar a corrosão das barras de aço do concreto é uma necessidade.
- Várias técnicas são utilizadas: cobertura de concreto mais espessa; proteção catódica; membranas, revestimento epóxi... e aço inoxidável no lugar do aço carbono.

2. Por que o aço inoxidável é resistente à corrosão?

Camada Passiva vs. Revestimentos


PELÍCULA PASSIVA em AÇO INOXIDÁVEL : Oxi-hidróxidos de Fe e Cr


c

Danos à camada protetora

3. Tipos de corrosão dos aços inoxidáveis

Efeito do teor de Cromo na resistência à corrosão atmosférica (corrosão uniforme)

Quando o tipo de aço inoxidável não foi corretamente selecionado, pode ocorrer corrosão

... nenhum material é perfeito!

Pensa que é como selecionar o veículo correto para o uso previsto.

Tipos de corrosão em aços inoxidáveis

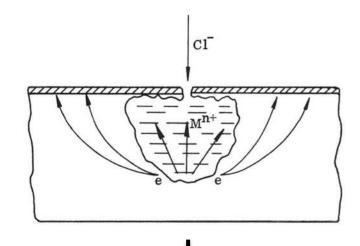
- a) Uniforme
- b) Pite
- c) Intersticial
- d) Galvânico
- e) Intergranular
- f) Fragilização por corrosão sob tensão

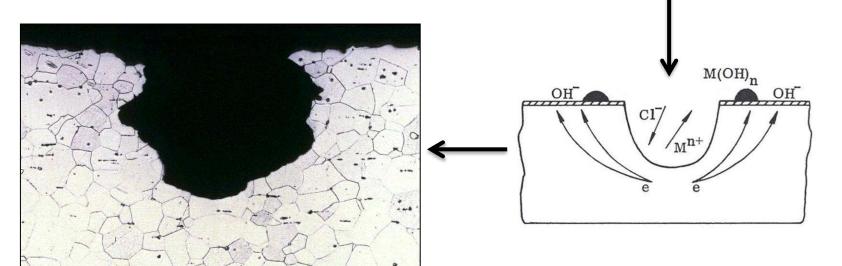
a) O que é corrosão uniforme?

- Quando o filme passivo é destruído pelo ambiente agressivo, toda a superfície corrói uniformemente e a perda de metal pode ser expressa em μm / ano.
- Isso é típico dos aços carbono sem proteção.
- Isso não ocorre nos aços inoxidáveis na indústria da construção, já que as condições de corrosão nunca são tão agressivas (normalmente seria necessário a imersão em ácidos para isso ocorrer).

15

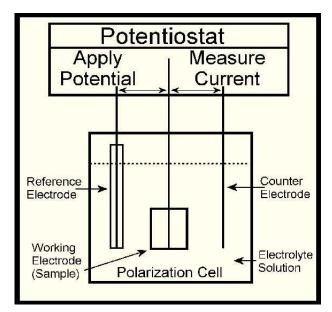
b) O que é corrosão por pite^{1,2,3,7}?

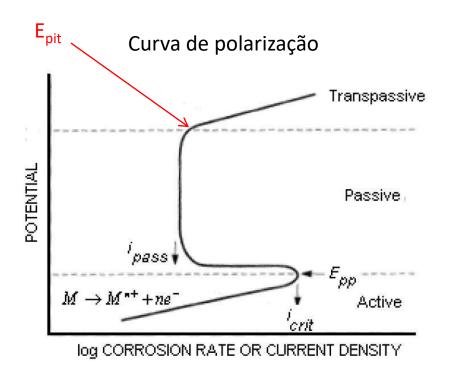

A corrosão por pite, ou pite, é uma forma de corrosão extremamente localizada que leva à geração de pequenos furos no metal.


Esta imagem mostra a corrosão por pite do aço inoxidável EN1.4310 (AISI 301) como resultado de uma resistência à corrosão insuficiente em um ambiente clorado muito agressivo.

Mecanismos de corrosão por pite

- 1. Se inicia em irregularidades superficiais muito pequenas ou em inclusões não metálicas
- 2. Se propaga porque as reações eletroquímicas na cavidade não são afetadas pela re-passivação

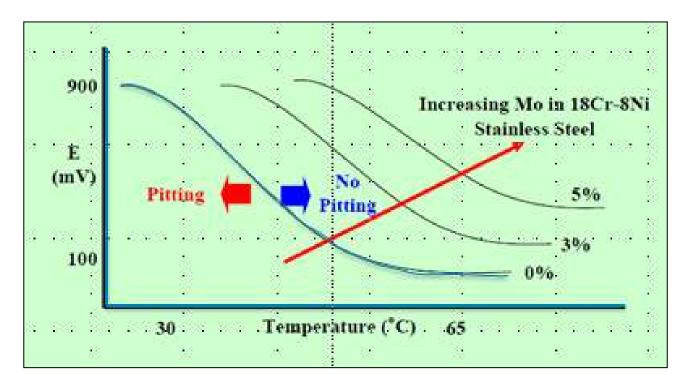




O pite pode ser reproduzido em uma célula eletroquímica⁴

- A corrosão envolve a dissolução do metal, isto é, um processo eletroquímico com:
 - a) reações eletroquímicas na superfície do metal e
 - b) uma corrente entre o metal de corrosão (anodo) e uma parte catódica
- Esses processos podem ser simulados em uma célula eletroquímica, um dispositivo que permite o estudo dos processos de corrosão

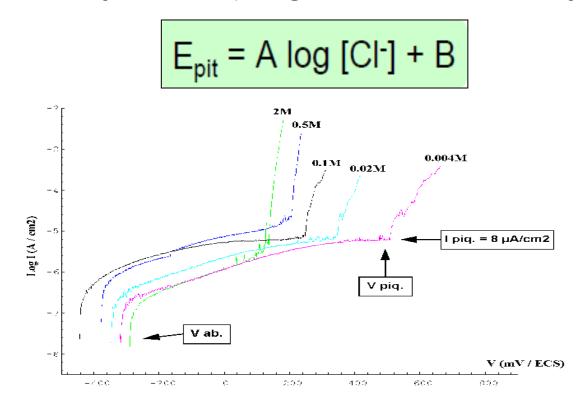
Célula Eletroquímica



Principais fatores que influenciam a corrosão por pite¹

(o potencial de pite Epit é geralmente usado como critério para o pite)

Temperatura

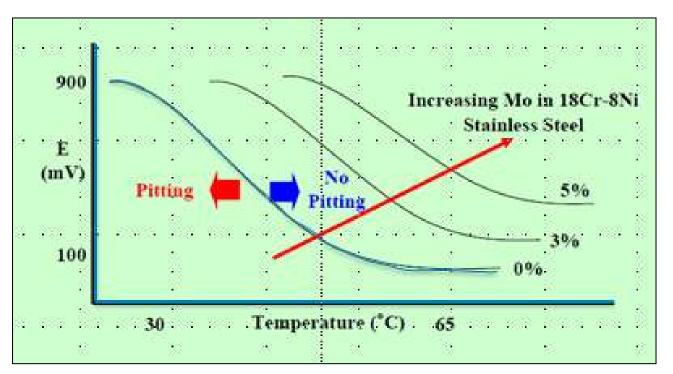

Aumentar a temperatura reduz drasticamente a resistência à corrosão por pite.

Principais fatores que influenciam a corrosão por pite⁵

(o potencial de pite Epit é geralmente usado como critério para o pite)

2. Concentração de cloreto

A resistência ao pite diminui à medida que aumenta a concentração de Cl⁻ (o logaritmo da concentração de Cl⁻)



Principais fatores que influenciam a corrosão por pite¹

(o potencial de pite Epit é geralmente usado como critério para o pite)

2. Análise do aço inoxidável

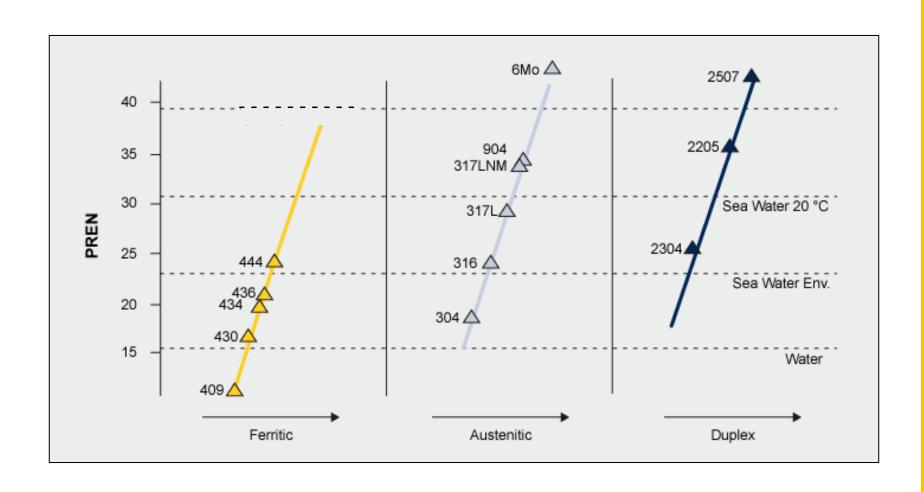
A resistência ao pite aumenta fortemente com o teor de alguns elementos de liga: N, Mo, Cr

O papel dos elementos de liga é descrito pelo PREN (Número Equivalente de Resistência ao Pite)

Número Equivalente de Resistência ao Pite (PREN)⁶

- Mediante o cálculo do PREN é possível comparar a resistência do aço inoxidável contra a corrosão por pite. Quanto maior o número, melhor a resistência.
- Obviamente o PREN por si só não pode ser usado para prever se um determinado tipo em particular será adequado para uma determinada aplicação

PREN = Cr + 3.3Mo + 16N, onde

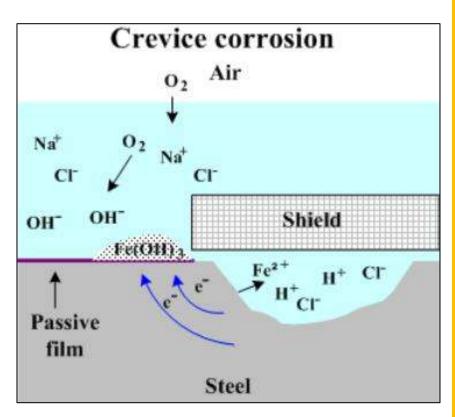

Cr = Teor de cromo

Mo = Teor de molibdênio

N = Teor de nitrogênio

EN	AISI	PREN
1.4003	-	10.5 - 12.5
1.4016	430	16.0 - 18.0
1.4301	304	17.5 - 20.8
1.4311	304LN	19.4 – 23.0
1.4401/4	316/L	23.1 – 28.5
1.4406	316LN	25.0 – 30.3
1.4439	317L	31.6 – 38.5
1.4539	-	32.2 - 39.9
1.4362	-	23.1 – 29.2
1.4462	-	30.8 - 38.1
1.4410	-	40
1.4501	-	40

PREN de alguns tipos comuns⁹


Nota: consulte o Apêndice para obter as designações das euro-normas EN

c) O que é corrosão intersticial¹?

A corrosão em fresta ou intersticial refere-se à corrosão que ocorre em espaços confinados aos quais o acesso do fluido de trabalho do ambiente é limitado. Esses espaços são geralmente chamados de frestas. Exemplos de frestas são lacunas e áreas de contato entre partes, em juntas ou vedações, dentro de rachaduras e costuras interiores, espaços preenchidos com depósitos e sob camadas de lodo.

Mecanismo de corrosão intersticial

- Inicialmente, não há diferença entre a cavidade e o restante da superfície
- As coisas mudam quando o oxigênio se esgota no interior da cavidade
- Dentro da fresta ocorre um conjunto de reações eletroquímicas, tendo como resultado o aumento da concentração de Cl-, diminuindo o pH local, ao ponto que a passivação não pode mais ocorrer
- Então o metal na fresta sofre corrosão uniforme

Temperatura Crítica de Resistência ao Pite (CPT) Temperatura Crítica de Corrosão Intersticial (CCT) de vários tipos de austeníticos e duplex⁸

Nota: Quanto maior a temperatura, melhor a resistência à corrosão

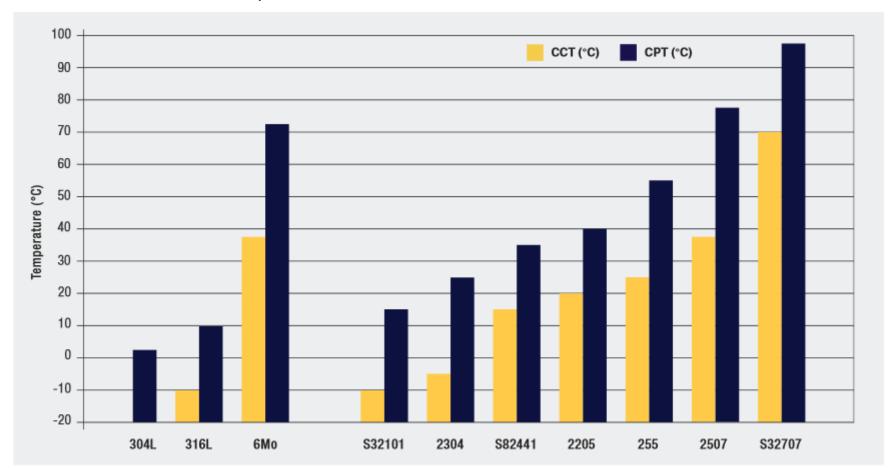


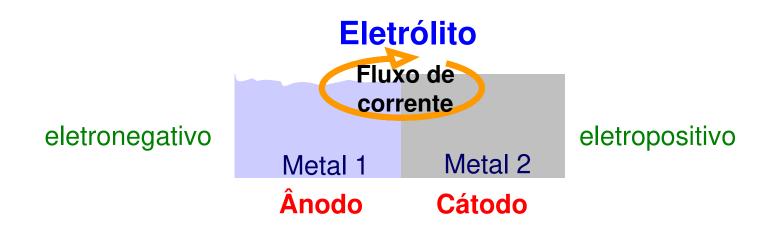
Figure 9: Critical pitting and crevice corrosion temperatures for unwelded austenitic stainless steels (left side) and duplex stainless steels (right side) in the solution annealed condition (evaluated in 6% ferric chloride by ASTM G 48).

Nota: consulte o Apêndice para obter as designações da euro-norma EN

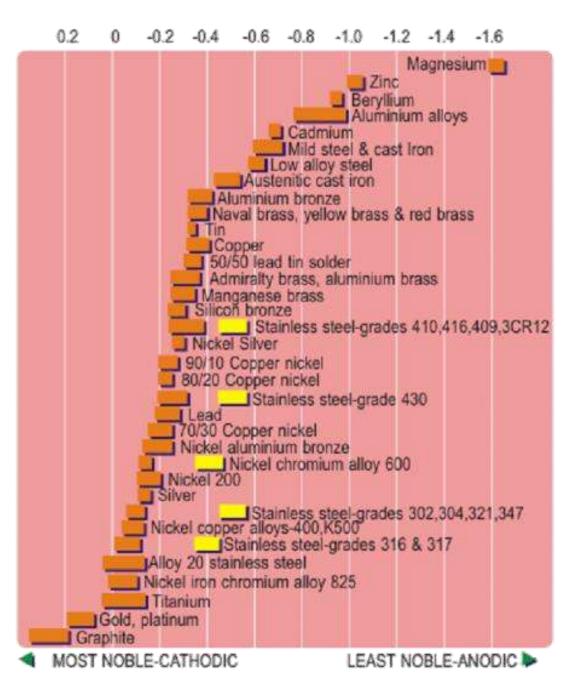
Como evitar a corrosão intersticial

- 1. Otimizar o projeto:
 - a) Use peças soldadas.
 - b) Projetar recipientes para drenagem completa.
- 2. Limpeza para remover os depósitos (sempre que possível)
- Selecionar um aço inoxidável com resistência à corrosão adequada (consulte a parte 4 deste capítulo)

d) O que é corrosão galvânica¹? (conhecido como corrosão bimetálica)


Corrosão que pode ocorrer quando dois metais com potenciais galvânicos muito diferentes estão em contato.

O metal mais anódico é atacado

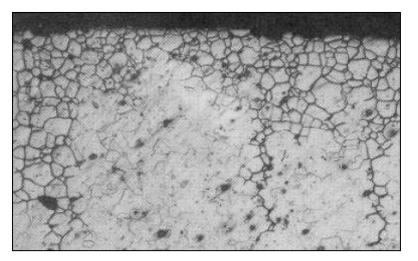

Exemplo na imagem à esquerda: A placa de aço inoxidável foi fixada a um recipiente de aço inoxidável, utilizando parafusos de aço comum - resultando na corrosão galvânica dos parafusos na presença de umidade (= eletrólito)

Mecanismo de corrosão galvânica

- Cada metal tem um potencial característico quando imerso em um eletrólito (medido contra um eletrodo de referência.)
- Quando 2 metais estão conectados com um líquido condutor (umidade é suficiente):
- E os 2 metais têm potenciais muito diferentes
- Uma corrente fluirá do mais eletronegativo (ânodo) para o mais eletropositivo (cátodo).
- Se a área do ânodo for pequena, levará à dissolução do metal

Série galvânica para metais em água do mar.

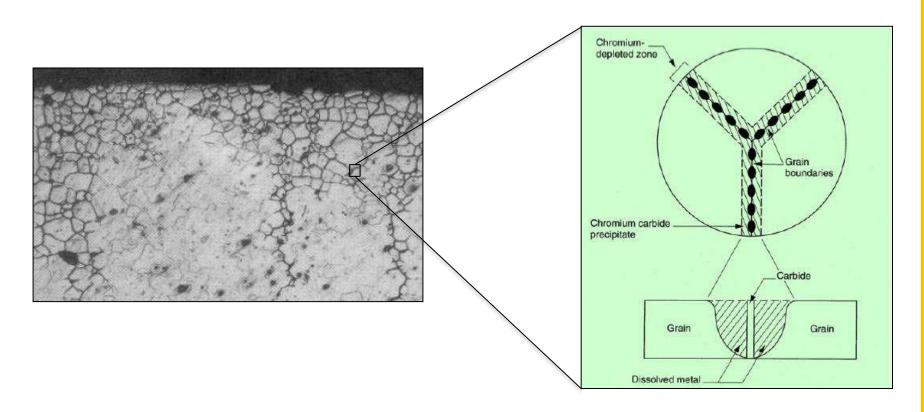
Regras básicas sobre como evitar a corrosão galvânica


- Evite união de metais diferentes
- Quando metais diferentes estão em contato, certifique-se de que o metal menos nobre (ânodo) tem uma área de superfície muito maior do que o metal mais nobre (cátodo).

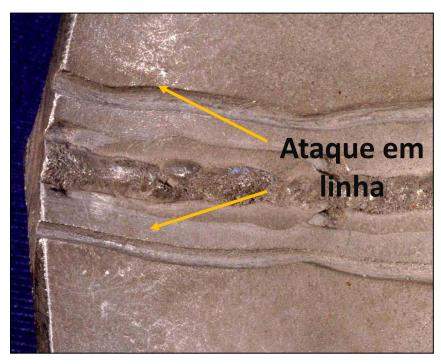
Exemplos:

- Use fixadores de aço inoxidável para peças de alumínio (e nunca fixadores de alumínio para aço inoxidável)
- Igualmente entre aço inoxidável e aço carbono

e) O que é Corrosão Intergranular¹?


O ataque intergranular é causado pela formação de carbonetos de cromo (Fe, Cr)23C6 no contorno dos grãos, reduzindo o teor de cromo e a estabilidade da camada passiva.

Nas micrografias acima, as amostras de aço inoxidável foram polidas e depois atacadas com um meio fortemente ácido. A rede de linhas pretas corresponde a um forte ataque químico nos contornos dos grãos, que apresentam uma resistência à corrosão muito menor do que os próprios grãos.

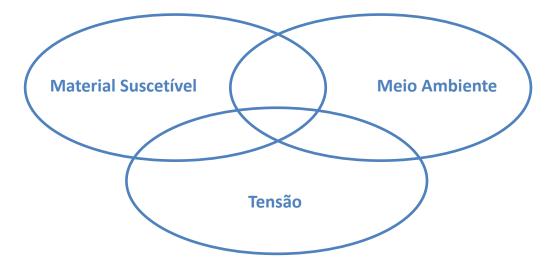

Vista esquemática da redução de Cr nos contornos dos grãos

Quando ocorre a corrosão Intergranular?

- Aços inoxidáveis produzidos adequadamente não são propensos a corrosão intergranular
- Pode ocorrer na Zona Afetada pelo Calor de uma solda (de cada lado da solda) quando
 - O teor de carbono é alto
 - e o aço não é estabilizado (por Ti, Nb, Zr* que "aprisiona" o carbono na matriz, evitando sua precipitação em carbonetos de cromo nos contornos dos grãos)

* É por isso que existem classes contendo Ti e / ou Nb e / ou Zr, classes qualificadas como "estabilizadas"

Deterioração da Solda


Para mais informações sobre soldagem e outros métodos de união, consulte o Módulo 09

Como evitar a corrosão intergranular

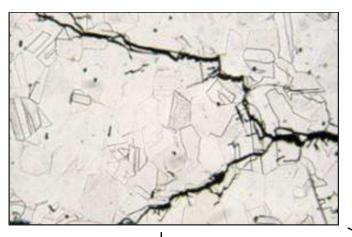
- Utilize aços inoxidáveis com baixo teor de carbono, abaixo de 0,03% para os austeníticos
- Ou utilize os aços ferríticos e austenítico estabilizados
- Ou para os austeníticos, realizar um tratamento de recozimento por dissolução (a 1050 ° C todos os carbonetos são dissolvidos) seguido por resfriamento. (No entanto, isso geralmente é impraticável).

f) O que é a fragilização por corrosão sob tensão (SCC)?

- Fragilização súbita e falha de um componente sem deformação.
- Isso pode ocorrer quando
 - A peça está sob tensão (por uma carga aplicada ou por uma tensão residual)
 - O meio ambiente é agressivo (alto nível de cloreto, temperatura acima de 50°C)
 - O aço inoxidável não é suficientemente resistente a corrosão sob tensão SCC

Os aços inoxidáveis ferríticos e duplex (isto é, austeníticos-ferríticos) são imunes a corrosão sob tensão SCC

Mecanismo da fragilização por corrosão sob tensão (SCC)


A ação combinada das condições ambientais (cloretos / temperatura elevada) e tensão - seja aplicada, residual ou ambas, desenvolvem a seguinte sequência de eventos :

- 1. Ocorre o Pite
- 2. Trincas começam a partir do local de início do pite
- 3. As trincas se propagam através do metal em um modo transgranular ou intergranular.
- 4. Ocorrem falhas

Evitando a SCC – duas escolhas

+Cr

Trincas por corrosão sob tensão induzida por cloreto em aços inoxidáveis austeníticos padrão, a saber 1.4301 / 304 ou 1.4401 / 316

+Ni +Mo

> 1.4539 1.4547 (6Mo)

Selecione aços inoxidáveis austeníticos com maior teor de Ni e Mo (maior resistência à corrosão)

Selecione as classes duplex, com preços mais estáveis (menos níquel)

1.4462 1.4410 1.4501

Os aços inoxidáveis ferríticos e duplex são imunes à corrosão sob tensão (porque a fase ferrita não é sensível a esse tipo de corrosão, como a austenita).

Para mais informações sobre estes tipos de aço inoxidável, por favor, vá para o Módulo 04

4. Como selecionar o aço inoxidável certo para uma adequada resistência à corrosão

Duas situações diferentes :

- 1. Aplicações estruturais
- 2. Outras aplicações

4 - 1 Aplicações Estruturais

O Eurocódigo 1-4 fornece um procedimento para selecionar o tipo apropriado de aço inoxidável para o ambiente de serviço dos elementos estruturais. (Por favor, note que no presente momento - ou seja, nov 2014 - as recomendações do Grupo de Evolução da EN 1993-1-4 ainda não são obrigatórias)

Este procedimento é apresentado nos próximos slides É aplicável para:

- Elementos que suportam carga
- Uso exterior
- Ambientes sem imersão frequente na água do mar
- pH entre 4 e 10
- Nenhuma exposição à corrente de fluxo de processos químicos

Como funciona o procedimento

- O ambiente é avaliado por um Fator de Resistência à Corrosão (CRF) composto por 3 componentes (CRF = F1 + F2 + F3) onde
 - a) F1 classifica o risco de exposição a cloretos de água salgada ou sais de degelo
 - b) F2 avalia o risco de exposição ao dióxido de enxofre
 - F3 avalia o regime de limpeza ou a exposição à lavagem pela chuva
- Uma tabela de correspondência indica para um determinado CRF a classe CRC correspondente
- Os tipos de aço inoxidável são colocados em Classes de Resistência à Corrosão (CRC) I a V de acordo com o valor CRF

As tabelas são mostradas nos próximos 4 slides

F ₁ Risco de exposição ao CI (água salgada ou sais de degelo)				
Nota: M é a dis	Nota: M é a distância do mar e S é a distância das estradas com sais de degelo			
1	Ambiente controlado			
0	Baixo risco de exposição M > 10 k	m ou S > 0.1 km		
-3	Médio risco de exposição 1 km < M ≤ 10 km	ou 0.01 km < S ≤ 0.1 km		
-7	Alto risco de exposição 0.25 km < M ≤ 1 km	n ou S ≤ 0.01 km		
-10	Muito alto risco de exposição Túneis rodoviários onde o sal de degelo é usado ou onde os veículos podem levar sais de degelo para dentro do túnel			
-10	Muito alto risco de exposição Costa do Mar do Norte da Alemanha Todas as áreas costeiras do Báltico	M ≤ 0.25 km		
-15	Muito alto risco de exposição Costa Atlântica de Portugal, Espanha e França Litoral do Reino Unido, França, Bélgica, Países Baixos, sul da Su Todas as outras áreas costeiras do Reino Unido, Noruega, Dinar Costa mediterrânea			

F₂ Risco de exposição ao dióxido de enxofre

Nota: para os ambientes costeiros europeus, o valor do dióxido de enxofre é geralmente baixo. Para ambientes internos, o valor do dióxido de enxofre é baixo ou médio. A classificação alta é incomum e está associada a locais industriais particularmente pesados ou a ambientes específicos, como túneis rodoviários. A deposição de dióxido de enxofre pode ser avaliada de acordo com o método da ISO 9225.

0	Baixo risco de exposição	(<10 μg/m³ deposição média)
-5	Médio risco de exposição	(10 – 90 μg/m³ deposição média)
-10	Alto risco de exposição	(90 – 250 μg/m³ deposição média)

F_3 Regime de limpeza ou exposição à lavagem pela chuva (se $F_1 + F_2 = 0$, então $F_3 = 0$)	
0	Totalmente exposto à lavagem pela chuva
-2	Regime de limpeza especificado
-7	Nenhuma lavagem pela chuva ou nenhuma limpeza especificada

Tabela de correspondência

Tabela A.2: Determinação da Classe de Resistência à Corrosão CRC		
Fator de Resistência à Corrosão (CRF) Classe de Resistência à Corrosão (CRC)		
CRF = 1		
0 ≥ CRF > -7	II	
-7 ≥ CRF > -15	III	
-15 ≥ CRF ≥ -20	IV	
CRF < -20	V	

Classes de resistência à corrosão de aços inoxidáveis

Tabela A.3: Tipos em cada Classe de Resistência à Corrosão CRC				
	Classe de resistência à corrosão CRC			
I	II	III	IV	V
1.4003	1.4301	1.4401	1.4439	1.4565
1.4016	1.4307	1.4404	1.4539	1.4529
1.4512	1.4311	1.4435	1.4462	1.4547
	1.4541	1.4571		1.4410
	1.4318	1.4429		1.4501
	1.4306	1.4432		1.4507
	1.4567	1.4578		
	1.4482	1.4662		
		1.4362		
		1.4062		
		1.4162		
Ferríticos		Austeníticos padrão		Mo Austenítcos
Lean Duplex		Super Austeníticos		Ouplex/super duplex

Notas:

Por favor, consulte o apêndice para designações das euronormas EN Este método não se aplica a piscinas

4 - 2 Outras aplicações

- Não há regulações específicas aplicáveis
- A seleção do tipo deve ser adequada para o desempenho esperado
- Três maneiras de fazer isso :
 - Pergunte a um especialista
 - Obtenha ajuda de associações de desenvolvimento de aço inoxidável
 - Descubra casos de sucesso em ambientes semelhantes (geralmente disponíveis)

Guia de Seleção de Tipos de Aço para a Arquitetura¹⁰

Cuidado: NÃO aplicável quando

- Aparência não importa
- Integridade estrutural é a principal preocupação (Então vá para 4 - 1)

Como funciona o procedimento

- Uma pontuação de avaliação deve ser calculada
- Para cada pontuação, é fornecida uma lista de tipos recomendados de aço inoxidável

Critérios utilizados na pontuação da avaliação (ver os próximos slides):

- i. Poluição ambiental
- ii. Exposição costeira ou exposição a sais de degelo
- iii. Padrão climático local
- iv. Considerações de design
- V. Cronograma de manutenção

. Poluição ambiental

Points		
	Rural	
0	Muito baixa ou nenhuma poluição	
	Poluição urbana (indústria leve, exaustão automotiva)	
0	Baixa	
2	Moderada	
3	Alta *	
	Poluição industrial (gases agressivos, óxidos de ferro, produtos químicos, etc.)	
3	Baixa ou moderada	
4	Alta *	
* Potencialmente, um local altamente corrosivo. Peça a um especialista em aço inoxidável que avalie o local		

ii. A) Exposição costeira

Pontos	
	Exposição Costeira ou ao Sal Marinho
1	Baixo [>1.6 a 16 km (1 a 10 milhas) da água do mar] **
3	Moderato [30m a 1.6 km (100 pés a 1 milha) da água do mar]
4	Alta [<30m (100 pés) da água do mar]
5	Marinha (névoa marinha ou borrifadas ocasionais) *
8	Marinha Severa (borrifadas contínuas) *
10	Marinha Severa (Imersão contínua) *

^{*} Potencialmente, um local altamente corrosivo. Peça a um especialista em corrosão em aço inoxidável que avalie o local.

^{**} Este intervalo mostra até que ponto os cloretos são normalmente encontrados de grandes massas de água salgada. Alguns locais desse tipo são expostos a cloretos, mas outros não são.

ii. B) Exposição a sais de degelo

Pontos	
	Exposição a sais de degelo (Distância da estrada ou solo)
0	Nenhum sal foi detectado em uma amostra do local e nenhuma alteração nas condições de exposição é esperada.
0	Os níveis de tráfego e de vento nas estradas próximas são baixos para transportar cloretos para o local e nenhum sal de degelo é usado nas calçadas
1	Muito baixa exposição ao sal [≥10 m a 1 km (33 a 3,280 pés) ou 3 a 60 andares de altura] **
2	Baixa exposição ao sal [< 10 a 500 m (33 a 1600 pés) ou 2 a 34 andares]**
3	Moderada Eexposição ao sal [< 3 a 100 m (10 a 328 pés) ou 1 a 22 andares] **
4	Alta exposição ao sal [<2 a 50 m (6.5 a 164 pés) ou 1 a 3 andares] * **

^{*} Potencialmente, um local altamente corrosivo. Peça a um especialista em corrosão em aço inoxidável que avalie o local.

Nota: se tanto a exposição costeira quanto os sais de degelo estiverem presentes, por favor consulte um especialista

^{**} Este intervalo mostra até que ponto esta concentração de cloreto foi encontrada em pequenas estradas rurais e de tráfego intenso. Comprove as concentrações de cloreto na superfície.

iii. Padrão climático local

Pontos		
-1	Temperatura ou climas frios, chuva forte regular	
-1	Climas quente ou frio com umidade típica abaixo de 50%	
0	Temperatura ou clima frio, chuva forte ocasional	
0	Tropical ou subtropical, úmido, chuvas fortes regular ou sazonal	
1	Alta temperatura, chuva pouco frequente, umidade acima de 50%	
1	Chuva regular muito leve ou neblina frequente	
2	Quente, umidade acima de 50%, muito pouca ou nenhuma chuva***	
*** Se também houver exposição ao sal ou poluição, peça a um especialista em corrosão em aço inoxidável que avalie o local.		

v. Considerações de projeto

Pontos		\rangle \rangle \langle \lang
0	Bem exposto para facilitar a limpeza pela chuva	200
0	Superfícies verticais com o acabamento lixado no sentido vertical ou sem acabamento	rrocão
-2	Acabamento superficial é decapado, eletropolido ou rugoso ≤ R _a 0.3 μm (12μin)	ر ر
-1	Rugosidade superficial R_a 0.3 μ m (12 μ in) < X \leq R_a 0.5 μ m (20 μ in)	nria
1	Rugosidade superficial R_a 0.5 μ m (20 μ in) < X \leq R_a 1 μ m (40 μ in)	cictô
2	Rugosidade superficial > R_a 1 μ m (40 μ in)	B
1	Local coberto ou frestas não seladas***	
1	Superfícies horizontais	
1	Acabamento lixado com grãos na direção horizontal	
*** Se também houver exposição ao sal ou poluição, peça a um especialista em corrosão em aço inoxidável que avalie o local.		

Sobre Ra: http://www.worldstainless.org/Files/issf/non-image-files/PDF/Euro Inox/RoughnessMeasurement EN.pdf

Esta tabela mostra que a resistência a corrosão também depende do acabamento superficial.

Para mais informações sobre os acabamentos disponíveis, vá ao Módulo 08

v. Cronograma de manutenção

Pontos	
0	Não lavado
-1	Lavado pelo menos naturalmente
-2	Lavado quatro ou mais vezes por ano
-3	Lavado pelo menos mensalmente

Sistema de pontuação de seleção de aço inoxidável

Total de pontos	Seleção do Aço Inoxidável
0 a 2	O tipo 304 / 304L é geralmente a alternativa mais econômica
3	Tipo 316 / 316L ou 444 é geralmente a alternativa mais econômica
4	Tipo 317L ou um aço inoxidável mais resistente à corrosão é sugerido
≥ 5	Um tipo de aço inoxidável mais resistente como 4462, 317LMN, 904L, super duplex, super-ferrítico ou um 6% de molibdênio super austenítico pode ser necessário.

Nota: consulte o apêndice para designações da euronorma EN

Da correta seleção do tipo de aço inoxidável dependerá a durabilidade, necessidade de manutenção, vida útil com baixo custo do ciclo de vida e excelente sustentabilidade.

Mais informações sobre sustentabilidade no Módulo 11

Conclusão

 A seleção adequada do tipo correto de aço inoxidável para a aplicação e o meio ambiente, merece atenção.

 Quando isso é feito, o aço inoxidável proporcionará vida útil ilimitada sem manutenção.

No <u>Módulo 2</u> se encontra uma grande variedade de aplicações de sucesso do aço inoxidável e no <u>Módulo 1</u> a arte atemporal no mundo todo!

5. Referências

- Um excelente curso sobre corrosão. Por favor veja os capítulos 7 (corrosão galvânica), 8 (corrosão intergranular), 11 (corrosão intersticial) 12 (pites) 14 (corrosão sob tensão) e 15 (corrosão sob tensão nos aços inoxidáveis) http://corrosion.kaist.ac.kr/download/2008-1/chap11.pdf
- 2. Noções básicas sobre corrosão da NACE http://corrosion-doctors.org/Corrosion-History/Course.htm#Scope
- 3. Curso online sobre corrosão http://www.corrosionclinic.com/corrosion online lectures/ME303L10.HTM#top
- 4. Informação sobre ensaios eletroquimicos http://mee-inc.com/esca.html
- 5. Ugitech: Comunicação privada
- 6. BSSA (British Stainless Steel Association) sitio web "Cálculo do Número equivalente de corrosão por pite (PREN)" http://www.bssa.org.uk/topics.php?article=111
- 7. Sobre corrosão por pite https://kb.osu.edu/dspace/bitstream/handle/1811/45442/FrankelG_JournalElectrochemicalSociety_1998_v145n6_p218 6-2198.pdf?sequence=1
- 8. http://www.imoa.info/download files/stainless-steel/Duplex Stainless Steel 3rd Edition.pdf
- 9. http://www.imoa.info/molybdenum uses/moly grade stainless steels/steel grades.php
- 10. http://www.imoa.info/download files/stainless-steel/IMOA Houska-Selecting Stainless Steel for Optimum Perormance.pdf
- 11. http://www.aiadetroit.com/~aiadetro/images/stories/demo/rokbox/BECPDF/2011 aia deicing detroit.pdf
- 12. http://en.wikipedia.org/wiki/Galvanic corrosion
- 13. http://www.bssa.org.uk/topics.php?article=668
- 14. http://www.stainless-steel-world.net/pdf/SSW 0812 duplex.pdf
- 15. http://www.outokumpu.com/en/stainless-steel/grades/duplex/Pages/default.aspx
- 16. http://www.aperam.com/uploads/stainlesseurope/TechnicalPublications/Duplex Maastricht EN-22p-7064Ko.pdf
- a) Composição química de produtos planos de aço inoxidável para aplicações gerais na EN 10088-2: http://www.bssa.org.uk/topics.php?article=44; b) Composição química de produtos longos de aço inoxidável para aplicações gerais na EN 10088-3: http://www.bssa.org.uk/topics.php?article=46

Appendix: Designações¹⁷

EN Designation			Alternative Designations						
Steel name	Steel number	AISI	UNS	Other US	Generic/ Brand				
Ferritic stainless steels - standard grades									
X2CrNi12	1.4003		S40977		3CR12				
X2CrTi12	1.4512	409	S40900						
X6CrNiTi12	1.4516								
X6Cr13	1.4000	410S	S41008						
X6CrAl13	1.4002	405	S40500						
X6Cr17	1.4016	430	S43000						
X3CrTi17	1.4510	439	S43035						
X3CrNb17	1.4511	430N							
X6CrMo17-1	1.4113	434	S43400						
X2CrMoTi18-2	1.4521	444	S44400						
Martensitic stainless steels - standard grades									
X12Cr13	1.4006	410	S41000						
X20Cr13	1.4021	420	S42000						
X30Cr13	1.4028	420	S42000						
X3CrNiMo13-4	1.4313		S41500	F6NM					
X4CrNiMo16-5-1	1.4418				248 SV				
Martensitic and precipitation-hardening steels - special grades									
X5CrNiCuNb16-4	1.4542		S17400		17-4 PH				

Nota: Esta é uma tabela simplificada. Para classes especiais, por favor veja a referência 17.

EN Destacation	Alle continue Destinanti									
EN Designatio	Alternative Designations									
Steel name	Steel	AISI	UNS	Other US	Generic/					
	number				Brand					
Austenitic stainless steels - standard grades										
X10CrNi18-8	1.4310	301	S30100							
X2CrNi18-9	1.4307	304L	S30403							
X2CrNi19-11	1.4306	304L	S30403							
X2CrNiN18-10	1.4311	304LN	S30453							
X5CrNi18-10	1.4301	304	S30400							
X6CrNiTi18-10	1.4541	321	S32100							
X4CrNi18-12	1.4303	305	S30500							
X2CrNiMo17-12-2	1.4404	316L	S31603							
X2CrNiMoN17-11-2	1.4406	316LN	S31653							
X5CrNiMo17-12-2	1.4401	316	S31600							
X6CrNiMoTi17-12-2	1.4571	316Ti	S31635							
X2CrNiMo17-12-3	1.4432	316L	S31603							
X2CrNiMo18-14-3	1.4435	316L	S31603							
X2CrNiMoN17-13-5	1.4439	317L								
X1NiCrMoCu25-20-5	1.4539		N08904		904L					
Austenitic-ferritic stainless steels-standard grades										
X2CrNiN22-2	1.4062		S32202		DX 2202					
X2CrMnNiMoN21-5-3	1.4482		S32001							
X2CrMnNiN21-5-1	1.4162		S32101		2101 LDX					
X2CrNiN23-4	1.4362		S32304		2304					
X2CrNiMoN12-5-3	1.4462		S31803/	F51	2205					
			S32205							

Obrigado